On the convergence of the proximal algorithm for nonsmooth functions involving analytic features

نویسندگان

  • Hédy Attouch
  • Jérôme Bolte
چکیده

We study the convergence of the proximal algorithm applied to nonsmooth functions that satisfy the Lojasiewicz inequality around their generalized critical points. Typical examples of functions complying with these conditions are continuous semialgebraic or subanalytic functions. Following Lojasiewicz’s original idea, we prove that any bounded sequence generated by the proximal algorithm converges to some generalized critical point. We also obtain convergence rate results which are related to the flatness of the function by means of Lojasiewicz exponents. Apart from the sharp and elliptic cases which yield finite-time or geometric convergence, the decay estimates that are derived are of the type O(k), where s ∈ (0,+∞) depends on the flatness of the function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of three positive solutions for nonsmooth functional involving the p-biharmonic operator

This paper is concerned with the study of the existence of positive solutions for a Navier boundaryvalue problem involving the p-biharmonic operator; the right hand side of problem is a nonsmoothfunctional with variable parameters. The existence of at least three positive solutions is establishedby using nonsmooth version of a three critical points theorem for discontinuous functions. Our resul...

متن کامل

A Proximal Algorithm with Quasi Distance. Application to Habit’s Formation

We consider a proximal algorithm with quasi distance applied to nonconvex and nonsmooth functions involving analytic properties for an unconstrained minimization problem. We show the behavioral importance of this proximal point model for habit’s formation in Decision and Making Sciences.

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions

We propose an algorithmic framework for convex minimization problems of composite functions with two terms: a self-concordant part and a possibly nonsmooth regularization part. Our method is a new proximal Newton algorithm with local quadratic convergence rate. As a specific problem instance, we consider sparse precision matrix estimation problems in graph learning. Via a careful dual formulati...

متن کامل

Nonsmooth Steepest Descent Method by Proximal Subdifferentials in Hilbert Spaces

In this paper, we first study a nonsmooth steepest descent method for nonsmooth functions defined on a Hilbert space and establish the corresponding algorithm by proximal subgradients. Then, we use this algorithm to find stationary points for those functions satisfying prox-regularity and Lipschitz continuity. As an application, the established algorithm is used to search for the minimizer of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009